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LETTER TO THE EDITOR 

On the critical dynamics of one-dimensional disordered 
Ising models 

M Drozt$, J Kamphorst Leal da Silva?§, A MalaspinastS and 
A L Stellall 
t Department of Theoretical Physics, University of Geneva, 1211 Geneva 4, Switzerland 
I/ Dipartimento di Fisica ed Unita GNSM-CISM, Universita di Padova, 35131 Padova, Italy 

Received 4 November 1986 

Abstract. The critical dynamics of a disordered Ising ferromagnetic chain with two coupling 
constants (I, 2 I2 > 0) is studied for Glauber dynamics. Using a domain wall argument 
the dynamical critical exponent z is found to be non-universal but independent of the 
disorder, namely z = 1 + J , /  J2. The problem is formulated in terms of diffusion in a random 
medium. The diffusion is shown to be normal. Relationships with apparently very different 
diffusion problems, like the diffusion in hierarchically structured media, are established. 

The critical dynamics of one-dimensional Ising models turned out recently to be richer 
than anticipated and several works have been devoted to it (Droz et al 1986a, b, Weir 
and Kosterlitz 1986, Kutasov et a1 1986, Kamphorst 1986). In particular it has been 
shown that the critical dynamical exponent z, characterising the behaviour of the order 
parameter close to criticality, was not universal even for Glauber dynamics. For a 
ferromagnetic Ising chain with alternating couplings J1 3 J2 > 0, it was shown (Droz 
et al 1986a) that z = 1 + J1/ J2 for Glauber dynamics, a result to be compared with the 
value z = 2 for the uniform case. The same result could be reproduced by generalising 
a domain wall argument (DWA) due to Cordery er a1 (1981). Although the DWA is 
supposed to give an upper bound to the dynamical exponent z, it turns out that it 
predicts the exact values for all the one-dimensional cases for which an answer is 
known (Droz er a1 1986a). Thus the value of z predicted by this method is probably 
exact in one dimension. 

One of the key ingredients in the determination of z by a DWA is how the wall 
diffuses. For non-random systems the diffusion is usually normal. However even in 
this case, anomalous diffusion can be found in systems with hierarchical patterns of 
hopping rates (Maritan and Stella 1986a, b). 

Recently a lot of attention has been devoted to the problem of diffusion in a random 
environment (Sinai 1982, Derrida and Pomeau 1982). It turns out that randomness 
can lead to quite anomalous diffusive behaviours. In view of this fact, one may suspect 
that the dynamics of a disordered version of the Ising chain with coupling constants 
taking values J1 or J2 randomly may differ from the one of the ordered chain. 

$ Work supported in part by the Swiss National Science Foundation. 
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It is thus legitimate to study the critical dynamics of such a disordered chain. In 
this case there is no exact solution of the equations of motion. However, Dhar and 
Barma (1980) were able to give an analytical estimate of the time dependent magnetisa- 
tion. By integrating their result one can have an upper bound for the dynamical 
exponent z. 

The purpose of this letter is to consider this problem from the DWA point of view. 
The paper is organised as follows. First the model is defined and the DWA is briefly 
reviewed. The problem is then rephrased in terms of a random walk in a disordered 
medium. The corresponding equation for the mean passage time is solved and the 
result is averaged over the disorder. It turns out that the diffusion is normal and that 
the dynamical critical exponent is equal to 1 + J 1 / J 2 ,  as for the ordered case. Finally, 
the problem of diffusion in a random environment is considered from a different point 
of view. By a decimation transformation the original problem is mapped onto another 
apparently very different one, analogous to problems being recently considered in the 
literature like the diffusion in hierarchically structured media. 

The model we consider is defined by the Hamiltonian 

H = - ~ J  IS,Sl+I 
I 

where the ferromagnetiy couplings J, are independent random variables. Although 
part of the discussion is quite general we will concentrate on a double-delta distribution 
for the couplings 

P( J )  = pS (J - 51) + ( 1 - p )  S( J - J*) J i  3 Jz > 0 O < p < l .  (1) 

The average correlation length I (  T )  describing the decay of the quenched average of 
the two point function is easily obtained as 

c-'( T )  = -log[ p tanh( K , )  + (1 - p )  tanh( K , ) ]  

where K i  = Ji/kBT. For T - ,  T,= 0 we find 

c( T )  =exp(2K2). ( 2 )  
The dynamics is given by the usual master equation for the probability p , ( { s i } )  that 
the configuration {si} is realised at time t, namely 

The transition rates w are partially determined by the detailed balance condition. For 
Glauber dynamics they are chosen as 

y i  = tanh( K ,  - + K ,  f tanh( K , - ,  - K ,  ). ( 5 )  
From now on we will set r = 1 .  For a temperature near T, we define the dynamical 
critical exponent z by 

T = p  

where T is the relaxation time of the magnetisation averaged over the disorder. 
Let us recall how z can be extracted by a domain wall argument in our case. For 

any given realisation of the distribution of the coupling constants, the behaviour of 
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the relaxation time at low temperatures is determined by the time it takes for a domain 
wall (DW)  to decay, i.e. the time it takes for a DW to cover a distance of the order of 
the correlation length. Generally speaking if one chooses the fastest possible mechan- 
ism for the DW motion the resulting value of z should be an upper bound to the exact 
one (Cordery et a1 1981). 

The statement of the DWA may be rephrased as follows. Given the DW at site n = 0 
at time t = 0 what is the mean time it takes to decay at a distance 5? In other words 
we look for the absorbtion time in a random walk with two absorbing barriers, one at 
5 and the other at -5. The master equation corresponding to the motion of the DW 

is of the form 

p n ( t )  = w ; - l  p n - l (  t )  + w i + l  pn+l(t) - ( w :  + w i ) p n ( t )  

Suppose now that the absorbing barriers are at A and -A. Let Tk be the mean 
time for the DW to be absorbed having started at k at time zero. Using the backward 
master equation one can derive the following equation for Tk (see, e.g., Gardiner 1983) 

W:(  T k + l  - T k )  + W ; (  Tk-1 - T k )  = -1 - N = k s N  

with the boundary conditions T - A - 1 =  TA+1 = 0, to express the absorbing barriers. These 
equations can be solved and one finds for k = 0 

where 

In our particular case one has, using (4), 

w;+, = t (  1 -tanh(K, - Kn+l))  

w: = $ ( l  +tanh(K, - 

It follows easily that 

and that 

We can now average over the disorder. For A large enough the sum in the denominator 
of (7)  simplifies by the corresponding sums in the numerator since they all tend to 
their average values. One can then average over the disorder. Replacing A by 6 one 
finds 

7 =  To= wop 
with 
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For the double peaked distribution (2) one finds for low temperatures 

wo = exp(2KI - 2 K 2 ) .  

Since 

f -  e x p ( ~ , )  

we find 

z = 1 + J l / J 2 .  

This result is the same as for the Ising ferromagnet with alternate couplings discussed 
by Droz et a1 (1986a). On the other hand the same z may be extracted by integrating 
the time dependent magnetisation estimated for the same model by Dhar and Barma 
(1980). We note that also in their case this value of z represents an upper bound. The 
preceding calculation shows that the DW diffuses normally. This may look a priori 
surprising in view of known results on random walks with random transition rates 
(Sinai 1982, Derrida and Pomeau 1982) although the transition rates of the walk of 
the DW are not independent random variables as required in these references. In fact 
in our case the 4 ( n )  are essentially constant. But it is exactly these objects that decide 
the behaviour of a random walk. 

The dynamics of the domain wall described by (6) and (8) can be rephrased in the 
following way. One has a chain formed by a succession of ‘weak’ and ‘strong’ cells, 
distributed at random with the probability distribution given by (1). The hopping rates 
W ( i + j )  from cell i to cell J (strong or weak) are, in the low-temperature limit (see 
equation (8)) 

W ( s + s ) =  W ( s - + w ) =  W ( w + w ) = l  

W (  w + s) = W = exp( -2Ktr,,, - 2Kweak). 

and 

We would like to relate the diffusion properties of this problem to other more ‘standard’ 
problems with randomness. A useful strategy to do that consists in making a decimation 
(or prefacing) transformation, mapping the original problem onto a new effective 
problem having the same asymptotic behaviour. The basic idea is the following. The 
clusters of strong cells constitute a sort of effective barrier between weak cells, with 
effective transition rates decreasing with the size of the cluster. The initial problem 
can be mapped onto one including only weak cells but with effective transition rates. 
This idea can be practically realised by performing a decimation of the strong cells. 
Decimation is typical of the renormalisation group approach to this type of problem 
(Rammal and Toulouse 1982, Khantha and Stinchcombe 1986). 

The resulting diffusion problem for the weak cells is characterised by the following 
equation of motion for F,(u), the Laplace transform of the probability for the wall of 
being at time t in the weak cell i, having started at the weak cell 0 at time t = 0: 

(9) 
where the Kronecker symbol expresses the initial condition. The hopping rates %,,+, 
are equal to 1 if the cells i and i + 1 were not separated by strong cells before decimation. 
If  on the other hand, they were separated by k strong cells, then 

P I W R ( 4  = % - i , l r L ( 4  - Fl(41+ W ! . , + I P ! + l ( 4  - & 4 1 +  6.0 
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The coefficients pi are generated by the decimation transformation. Their physical 
origin lies in the fact that elimination of clusters of strong bonds implies waiting times 
for the cells adjacent to these clusters. These times are expected to grow with the 
length of the clusters. Indeed, one finds: 

p i  = 1 if the cell i is surrounded by weak cells 
pi = 1 + A (  k )  W if the cell i is adjacent to a cluster of k - 1 strong cells ( k  2 2) 
p i  = 1 + [ A ( k , ) +  A ( k z ) ]  W if the cell i has a cluster of k, - 1 strong cells on one 

side and a cluster of k2 - 1 strong cells on the other with 

( k  - 1)(2k - 1) k 
6k 3 

=- A( k )  = 

for large k 
Let us for the moment forget about the factors pi entering in equation (9). In this 

case, the symmetry of the hopping rates Wi,i+l allows us to draw easily conclusions 
on the nature of the diffusion. Indeed our random model can be characterised as 
follows. The probability of having a transition rate wi,i+, = 1 is proportional to 1 - p  
(see equation ( 2 ) ) .  The probability of having a transition rate q,i+l = W /  k is propor- 
tional to p k - ’ ( l  - p ) .  Thus we are faced with a random hopping rate problem in which 
the probability of small hopping rates at each bond decreases like pk .  

Problems with random hopping rates continuously distributed, e.g. on the interval 
(0,l) and taking values between E and E +de  with probability proportional to p(  E )  de, 
have been studied extensively in the literature (Alexander et a1 1981). It turns out that 
diffusion is normal provided the first negative moment of p converges. Also in our 
case an essentially continuous distribution is realised for small hopping rates ( k  + a), 
and the corresponding first negative moment can be estimated as 

Thus, our random problem would definitely fall into the normal diffusion regime, i.e. 
it would belong to class a in the Alexander et a1 (1981) terminology. In order to get 
anomalous diffusion one would need a much stronger decay of the hopping rates for 
large k, e.g. like a power law wk- R k ,  ( R <  1). In this case provided R < p  the 
behaviour would be anomalous and consistent with ~ ( E ) = E - ~ ,  with a = 
1 -log R/log p, i.e. it would fall into class c in the Alexander et a1 (1981) classification. 

Let us now return to the full problem, including the factors pi. Understanding the 
effect of these factors on the character of the diffusion is difficult for our random 
problem. We can however get an idea of what is going on by referring to what one 

W / 4  

W I  3 

w 12 I w12 

I icl 

Figure 1. Ultrametric realisation of our model. The hopping rates between cells are 
distributed in a hierarchical way. 
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can call an ultrametric deterministic realisation of the random problem at hand. The 
random problems of the type discussed by Alexander et a1 have deterministic hierar- 
chical counterparts having the same asymptotic properties (Teitel and Domany 1986, 
Maritan and Stella 1986a, b). We will restrict ourselves to p = f for simplicity. The 
ultrametric realisation of our random problem would be the one depicted in figure 1. 
Each barrier bears specification of the corresponding rate. Notice that there is a 
fraction (1 - p )  = f of barriers with rate 1 and a fraction =pk = ( f ) k  of barriers with 
rate W / k  We can now consider the role played by the pi. Assume that at each cell 
there is a waiting time factor 1 + A( k) W (k 3 2 being the order of the high barrier near 
cell i, at the left or at the right). It is possible (Stella 1986) to discuss the effects of 
the pi on the dynamics by renormalisation group arguments. One concludes that they 
do not affect the results obtained for pi = 1 for all i, if A ( k )  grows only linearly with 
k, as in our case. Thus the coincidence of asymptotic properties of the random problem 
and its hierarchical counterpart appears to hold also if the waiting time factors p, are 
taken into account. 
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